SAPonPower

An ongoing discussion about SAP infrastructure

HANA on Power hits the Trifecta!

Actually, trifecta would imply only 3 big wins at the same time and HANA on Power Systems just hit 4 such big wins.

Win 1 – HANA 2.0 was announced by SAP with availability on Power Systems simultaneously as with Intel based systems.[i]  Previous announcements by SAP had indicated that Power was now on an even footing as Intel for HANA from an application support perspective, however until this announcement, some customers may have still been unconvinced.  I noticed this on occasion when presenting to customers and I made such an assertion and saw a little disbelief on some faces.  This announcement leaves no doubt.

Win 2 – HANA 2.0 is only available on Power Systems with SUSE SLES 12 SP1 in Little Endian (LE) mode.  Why, you might ask, is this a “win”?  Because true database portability is now a reality.  In LE mode, it is possible to pick up a HANA database built on Intel, make no modifications at all, and drop it on a Power box.  This removes a major barrier to customers that might have considered a move but were unwilling to deal with the hassle, time requirements, effort and cost of an export/import.  Of course, the destination will be HANA 2.0, so an upgrade from HANA 1.0 to 2.0 on the source system will be required prior to a move to Power among various other migration options.   This subject will likely be covered in a separate blog post at a later date.  This also means that customers that want to test how HANA will perform on Power compared to an incumbent x86 system will have a far easier time doing such a PoC.

Win 3 – Support for BW on the IBM E850C @ 50GB/core allowing this system to now support 2.4TB.[ii]  The previous limit was 32GB/core meaning a maximum size of 1.5TB.  This is a huge, 56% improvement which means that this, already very competitive platform, has become even stronger.

Win 4 – Saving the best for last, SAP announced support for Suite on HANA (SoH) and S/4HANA of up to 16TB with 144 cores on IBM Power E880 and E880C systems.ii  Several very large customers were already pushing the previous 9TB boundary and/or had run the SAP sizing tools and realized that more than 9TB would be required to move to HANA.  This announcement now puts IBM Power Systems on an even footing with HPE Superdome X.  Only the lame duck SGI UV 300H has support for a larger single image size @ 20TB, but not by much.  Also notice that to get to 16TB, only 144 cores are required for Power which means that there are still 48 cores unused in a potential 192 core systems, i.e. room for growth to a future limit once appropriate KPIs are met.  Consider that the HPE Superdome X requires all 16 sockets to hit 16TB … makes you wonder how they will achieve a higher size prior to a new chip from Intel.

Win 5 – Oops, did I say there were only 4 major wins?  My bad!  Turns out there is a hidden win in the prior announcement, easily overlooked.  Prior to this new, higher memory support, a maximum of 96GB/core was allowed for SoH and S/4HANA workloads.  If one divides 16TB by 144 cores, the new ratio works out to 113.8GB/core or an 18.5% increase.  Let’s do the same for HPE Superdome X.  16 sockets times 24 core/socket = 384 cores.  16TB / 384 cores = 42.7GB/core.  This implies that a POWER8 core can handle 2.7 times the workload of an Intel core for this type of workload.  Back in July, I published a two-part blog post on scaling up large transactional workloads.[iii]  In that post, I noted that transactional workloads access data primarily in rows, not in columns, meaning they traverse columns that are typically spread across many cores and sockets.  Clearly, being able to handle more memory per core and per socket means that less traversing is necessary resulting in a high probability of significantly better performance with HANA on Power compared to competing platforms, especially when one takes into consideration their radically higher ccNUMA latencies and dramatically lower ccNUMA bandwidth.

Taken together, these announcements have catapulted HANA on IBM Power Systems from being an outstanding option for most customers, but with a few annoying restrictions and limits especially for larger customers, to being a best-of-breed option for all customers, even those pushing much higher limits than the typical customer does.

[i] https://launchpad.support.sap.com/#/notes/2235581

[ii] https://launchpad.support.sap.com/#/notes/2188482

[iii] https://saponpower.wordpress.com/2016/07/01/large-scale-up-transactional-hana-systems-part-1/

Advertisement

December 6, 2016 Posted by | Uncategorized | , , , , , , , , , , , , , , , , , , , | 3 Comments

Large scale-up transactional HANA systems – part 1

Customers which require Suite on HANA (SoH) and S/4HANA systems with 6TB of memory or less will find a wide variety of available options.  Those options do not require any specialized type of hardware, just systems that can scale up to 8 sockets with Intel based systems and up to 64 cores with IBM Power Systems (socket count depends on the number of active cores per socket which varies by system).  If you require 6TB or less or can’t imagine ever needing more, then sizing is a fairly easy process, i.e. look at the sizing matrix from SAP and select a system which meets your needs.  If you need to plan for more than 6TB, this is where it gets a bit more challenging.   The list of options narrows to 5 vendors between 6TB and 8TB, IBM, Fujitsu, HPE, SGI and Lenovo and gets progressively smaller beyond that.

All systems with more than one socket today are ccNUMA, i.e. remote cache, memory and I/O accesses are delivered with more latency and lower bandwidth than local to the processor accesses.   HANA is highly optimized for analytics, which most of you probably already know.  The way it is optimized may not be as obvious.  Most tables in HANA are columnar, i.e. every column in a table is kept in its own structure with its own dictionary and the elements of the column are replaced with a very short dictionary pointer resulting in outstanding compression, in most cases.  Each column is placed in as few memory pages as possible which means that queries which scan through a column can run at crazy fast speeds as all of the data in the column is as “close” as possible to each other.  This columnar structure is beautifully suited for analytics on ccNUMA systems since different columns will typically be placed behind different sockets which means that only queries that cross columns and joins will have to access columns that may not be local to a socket and, even then, usually only the results have to be sent across the ccNUMA fabric.  There was a key word in the previous sentence that might have easily been missed: “analytics”.  Where analytical queries scan down columns, transactional queries typically go across rows in which, due to the structure of a columnar database, every element in located in a different column, potentially spanning across the entire ccNUMA system.  As a result, minimized latency and high cross system bandwidth may be more important than ever.

Let me stop here and give an example so that I don’t lose the readers that aren’t system nerds like myself.  I will use a utility company as an example as everyone is a utility customer.  For analytics, an executive might want to know the average usage of electricity on a given day at a given time meaning the query is composed of three elements, all contained in one table: usage, date and time.    Unless these columns are enormous, i.e. over 2 Billion rows, they are very likely stored behind a single socket with no remote accesses required.  Now, take that same company’s customer care center, where a utility consumer wants to turn on service, report an outage or find out what their last few months or years of bills have been.  In this case, all sorts of information is required to populate the appropriate screens, first name, last name, street address, city, state, meter number, account number, usage, billed amount and on and on.  Scans of columns are not required and a simple index lookup suffices, but every element is located in a different column which has to be resolved by an independent dictionary lookup/replacement of the compressed elements meaning several or several dozen communications across the systems as the columns are most likely distributed across the system.  While an individual remote access may take longer, almost 5x in a worst case scenario[i], we are still talking nanoseconds here and even 100 of those still results in a “delay” of 50 microseconds.  I know, what are you going to do while you are waiting!  Of course, a utility customer is more likely to have hundreds, thousands or tens of thousands of transactions at any given point in time and there is the problem.  An increased latency of 5x for every remote access may severely diminish the scalability of the system.

Does this mean that is not possible to scale-up a HANA transactional environment?  Not at all, but it does take more than being able to physically place a lot of memory in a system to be able to utilize it in a productive manner with good scalability.  How can you evaluate vendor claims then?  Unfortunately, the old tried and true SAP SD benchmark has not been made available to run in HANA environments.  Lacking that, you could flip a coin, believe vendor claims without proof or demand proof.  Clearly, demanding proof is the most reasonable approach, but what proof?  There are three types of proof to look at: past history with large transactional workloads, industry standard benchmarks and architecture.

In the over 8TB HANA space, there are three competitors; HPE Superdome X, SGI UV 300H and IBM Power Systems E870/E880.  I will address those systems and these three proof points in part 2 of this blog post.

[i] http://www.vldb.org/pvldb/vol8/p1442-psaroudakis.pdf

July 1, 2016 Posted by | Uncategorized | , , , , , , , , , , , , , , , | 3 Comments

SAP HANA on Power support expands dramatically

SAP’s release of HANA SPS11 marks a critical milestone for SAP/IBM customers. About a year ago, I wrote that there was Hope for HoP, HANA on Power.  Some considered this wishful thinking, little more than a match struck in the Windy City.  In August, that hope became a pilot light with SAP’s announcement of General Availability of Scale-up BW HANA running on the Power Systems platform.  Still, the doubters questioned whether Power could make a dent in a field already populated by dozens of x86 vendors with hundreds of supported appliances and thousands of installed customers.  With almost 1 new customer per business day deciding to implement HANA on Power since that time, the pilot light has quickly evolved into a nice strong flame on a stove.

In November, 2015, SAP unleashed a large assortment of support for HoP.  First, they released a first of a kind support for running more than 1 production instance using virtualization on a system.[1]  For those that don’t recall, SAP limits systems running HANA in production on VMware to one[2], count that as 1, total VMs on the entire system.  Yes, non-prod can utilize VMware to its heart’s content, but is it wise to mess with best practices and utilize different stacks for prod and non-prod, much less deal with restrictions that limit the number of vps to 64, i.e. 32 real processors not counting VMware overhead and 1TB of memory?  Power now supports up to 4 resource pools on E870 and E880 systems and 3 on systems below this level.  One of those resource pools can be a “shared pool” supporting many VMs of any kind and any supported OS as long as none of them run production HANA instances.  Any production HANA instance must run in a dedicated or dedicated-donating partition in which when production HANA needs CPU resources, it gets it without any negotiation or delay, but when it does not require all of the resources, it allows partitions in the shared pool to utilize unused resources.   This is ideal for HANA as it is often characterized by wide variations in loads, often low utilization and very low utilization on non-prod, HA and DR systems, resulting in the much better flexibility and resource utilization (read that as reduced cost).

But SAP did not stop there.  Right before the US Thanksgiving holiday, SAP released support for running HANA on Power with Business Suite, specifically ERP 6.0 EHP7, CRM 7.0 EHP3 and SRM 7.0 EHP3, SAP Landscape Transformation Replication Server 2.0, HANA dynamic tiering, BusinessObjects Business Intelligence platform 4.1 SP 03, HANA smart data integration 1.0 SP02, HANA spatial SPS 11 and controlled availability of BPC[3], scale-out BW[4] using the TDI model with up to 16-nodes.  SAP plans to update the application support note as each additional application passes customer and/or internal tests, with support rolling out rapidly in the next few months.

Not enough?  Well, SAP took the next step and increased the memory per core ratio on high end systems, i.e. the E870 and E880, to 50GB/core for BW workloads thereby increasing the total memory supported in a scale-up configuration to 4.8TB.[5]

What does this mean for SAP customers?  It means that the long wait is over.  Finally, a robust, reliable, scalable and flexible platform is available to support a wide variety of HANA environments, especially those considered to be mission critical.  Those customers that were waiting for a bet-your-business solution need wait no more.  In short order, the match jumped to a pilot light, then a flame to a full cooktop.  Just wait until S/4HANA, SCM and LiveCache are supported on HoP, likely not a long wait at this rate, and the flame will have jumped to one of those jet burners used for crawfish boiling from my old home town of New Orleans!  Sorry, did I push the metaphor to far?  🙂

 

[1] 2230704 – SAP HANA on IBM Power Systems with multiple – LPARs per physical host

[2] 1995460 – Single SAP HANA VM on VMware vSphere in production

[3] 2218464 – Supported products when running SAP HANA on IBM Power Systems  and http://news.sap.com/customers-choose-sap-hana-to-run-their-business/

[4] BW Scale-out support restriction that was previously present has been removed from 2133369 – SAP HANA on IBM Power Systems: Central Release Note for SPS 09 and SPS 10

[5] 2188482 – SAP HANA on IBM Power Systems: Allowed Hardware

December 8, 2015 Posted by | Uncategorized | , , , , , , , , , | 8 Comments

Haswell-EX for HANA looks good on paper, POWER8 for HANA looks even better in real life

I was delighted to read Hasso Plattner’s recent blog on the strengths of HANA on platforms using the Haswell-EX chip from Intel:  https://blogs.saphana.com/2015/06/29/impact-of-haswell-on-hana/  In that blog, he did an excellent job of explaining how technical enhancements at a processor and memory subsystem level can result in dramatic improvement in the way that HANA operates,   Now, I know what you are thinking; he likes what Dr. Plattner has to say about a competitor’s technology?   Strange as it may seem, yes … in that he has pointed out a number of relevant features that, as good as Haswell-EX might be, POWER8 surpassed, even before Haswell-EX was announced.

All of these technical features and discussion are quite interesting to us propeller heads.   Most business people, on the other hand, would probably prefer to discuss how to improve HANA operational characteristics, deliver flexibility to respond to changing business demands and meet end user SLAs including response time and continuous availability.  This is where POWER8 really shines.  With PowerVM at its core, Power Systems can be tailored to deliver capacity for HANA production to ensure consistent response time and peak load capacity during high demand times and allow other applications and partitions to utilize capacity unused by the HANA production partition.   It can easily mix production with other production and non-production partitions.  It features the ability to utilize shared network and SAN resources, if desired, to reduce datacenter cost and complexity.  POWER8 delivers unmatched reliability by default, not as an option or a tradeoff against performance.

Regarding the technical features, Herr Dr. Plattner points out that Haswell-EX systems:

  • Support up to 144 cores per system with 12TB of memory.  POWER8 supports up to 196 cores and 16TB.  Actually, this under estimates that actual memory on a POWER8 system which is actually up to 17.7TB but IBM includes the extra 1.7TB at no extra cost as hot spare chips, not available with Haswell-EX systems.
  • Deliver L1, L2 and L3 cache size increases, which though he does not state, are, in fact, 32KB (16KB in enterprise RAS mode), 256KB and 45MB respectively, compared to POWER8’s 64KB, 512KB and 96MB respectively plus 128MB L4, not available with Haswell-EX systems.
  • Introduces enhancements to vector processing via the new AVX2 instruction unit compared to  POWER8’s dual VMX instruction units.
  • Rely on local memory access for HANA performance which is absolutely true and underlines why POWER8, with up to 4 times more bandwidth to memory, is such a good fit for HANA.
  • Feature TSX, Transactional Synchronization Extensions, to improve lock synchronization, an area that Power Systems has excelled at for decades.  POWER8 was actually a bit earlier in the whole transactional memory area but was actually preceded by IBM Blue Gene/Q, another PowerPC based technology.

He concludes by pointing out that internal benchmarks are of limited value but then explains what they achieved with Haswell-EX.  As these are not externally audited nor even published, it is hard to comment on their validity.

By comparison, SAP has only one certified benchmark for which HANA systems have been utilized called BW-EML.  Haswell-EX cpus were used in the 2B row Dell PowerEdge 930 benchmark and delivered an impressive 172,450 Ad-hoc Navigation Steps/Hr . This is impressive in that it surpassed the previous IvyBridge based benchmark of 137,010 Ad-hoc Navigation Steps/Hr on the Dell PowerEdge R920, an increase of almost 26% which would normally be impressive if it weren’t for the fact that the system includes 20% more cores and 50% more memory.  By comparison, POWER8 delivered 192,750 Ad-hoc Navigation Steps/Hr with the IBM Power Enterprise System 870 or 12% more performance with 45% fewer cores and 33% less memory resulting in twice the performance per core.

It would be ideal to run the SAP SD 3-tier benchmark against a system running Suite on HANA as that would do away with discussions of benchmarks that can’t be verified and/or may have limited relevance to a transactional environment typical of Suite on HANA.  From what I understand, the current SD benchmark depends on an older version of SAP code which is not supported on HANA.  I hope that SAP is able to update the benchmark test kit to enable this benchmark to be run on HANA as that would be far better than any sort of speculation.  In the meantime, we can only rely on assertions without detail and external review or on decades of proven experience handling large scaling transactional environments with mission critical levels of availability not to mention a wide variety of audited benchmarks demonstrating this ability.  Power Systems stands alone in this respect.

Benchmark details:

Dell PowerEdge 930: 172,450 Ad-hoc Navigation Steps/Hr using 4 processors / 72 cores / 144 threads, Intel Xeon Processor E7-8890 v3, 2.50 GHz, 1.5TB main memory, Certification #: 2015014

Dell PowerEdge R920: 137,010 Ad-hoc Navigation Steps/Hr on the, 4 processors / 60 cores / 120 threads, Intel Xeon Processor E7-4890 v2, 2.80 GHz,  1TB main memory, Certification #: 2014044

the IBM Power Enterprise System 870: 192,750 Ad-hoc Navigation Steps/Hr with, 4 processors / 40 cores / 320 threads, POWER8, 4.19 GHz,  1TB main memory, Certification #: 2015024

July 22, 2015 Posted by | Uncategorized | , , , , , , , , , , , | Leave a comment

HoP keeps Hopping Forward – GA Announcement and New IBM Solution Editions for SAP HANA

Almost two years ago, I speculated about the potential value of a HANA on Power solution.  In June, 2014, SAP announced a Test and Evaluation program for Scale-up BW HANA on Power.  That program shifted into high gear in October, 2014 and roughly 10 customers got to start kicking the tires on this solution.  Those customers had the opportunity to push HANA to its very limits.  Remember, where Intel systems have 2 threads per core, POWER8 has up to 8 threads per core.  Where the maximum size of most conventional Intel systems can scale to 240 threads, the IBM POWER E870 can scale to an impressive 640 threads and the E880 system can scale to 1536 threads.  This means that IBM is able to provide an invaluable test bed for system scalability to SAP.  As SAP’s largest customers move toward Suite “4” HANA (S4HANA), they need to have confidence in the scalability of HANA and IBM is leading the way in proving this capability.

A Ramp-up program began in March with approximately 25 customers around the world being given the opportunity to have access to GA level code and start to build out BW POC and production environments.  This brings us forward to the announcement by SAP this week @ SapphireNow in Orlando of the GA of HANA on Power.  SAP announced that customers will have the option of choosing Power for their BW HANA platform, initially to be used in a scale-up mode and plans to support scale-out BW, Suite on HANA and the full complement of side-car applications over the next 12 to 18 months.

Even the most loyal IBM customer knows the comparative value of other BW HANA solutions already available on the market.  To this end, IBM announced new “solution editions”.  A solution edition is simply a packaging of components, often with special pricing, to match expectations of the industry for a specific type of solution.  “Sounds like an appliance to me” says the guy with a Monty Python type of accent and intonation (no, I am not making fun of the English and am, in fact, a huge fan of Cleese and company).  True, if one were to look only at the headline and ignore the details.  In reality, IBM is looking toward these as starting points, not end points and most certainly not as any sort of implied limitation.  Remember, IBM Power Systems are based on the concept of Logical Partitions using Power Virtualization Manager (PVM).  As a result, a Power “box” is simply that, a physical container within which one or multiple logical systems reside and the size of each “system” is completely arbitrary based on customer requirements.

So, a “solution edition” simply defines a base configuration designed to be price competitive with the industry while allowing customers to flexibly define “systems” within it to meet their specific requirements and add incremental capability above that minimum as is appropriate for their business needs.  While a conventional x86 system might have 1TB of memory to support a system that requires 768GB, leaving the rest unutilized, a Power System provides for that 768GB system and allows the rest of the memory to be allocated to other virtual machines.   Likewise, HANA is often characterized by periods of 100% utilization, in support of instantaneous response time demanded of ad-hoc queries, followed by unfathomably long periods (in computer terms) of little to no activity.  Many customers might consider this to be a waste of valuable computing resource and look forward to being able to harness this for the myriad of other business purposes that their businesses actually depend on.  This is the promise of Power.  Put another way, the appliance model results in islands of automation like we saw in the 1990s where Power continues the model of server consolidation and virtualization that has become the modus operandi of the 2000s.

But, says the pitchman for a made for TV product, if you call right now, we will double the offer.  If you believe that, then you are probably not reading my blog.  If a product was that good, they would not have to give you more for the same price.  Power, on the other hand, takes a different approach.  Where conventional BW HANA systems offer a maximum size of 2TB for a single node, Power has no such inherent limitations.  To handle larger sizes, conventional systems must “scale-out” with a variety of techniques, potentially significantly increased costs and complexity.  Power offers the potential to simply “scale-up”.  Future IBM Power solutions may be able to scale-up to 4TB, 8TB or even 16TB.   In a recent post to this blog, I explained that to match the built in redundancy for mission critical reliability of memory in Power, x86 systems would require memory mirroring at twice the amount of memory with an associated increase in CPU and reduction in memory bandwidth for conventional x86 systems.  SAP is pushing the concepts of MCOS, MCOD and multi-tenancy, meaning that customers are likely to have even more of their workloads consolidated on fewer systems in the future.  This will result in demand for very large scaling systems with unprecedented levels of availability.  Only IBM is in position to deliver systems that meet this requirement in the near future.

Details on these solution editions can be found at http://www-03.ibm.com/systems/power/hardware/sod.html
In the last few days, IBM and other organizations have published information about the solution editions and the value of HANA on Power.  Here are some sites worth visiting:

Press Release: IBM Unveils Power Systems Solutions to Support SAP HANA
Video: The Next Chapter in IBM and SAP Innovation: Doug Balog announces SAP HANA on POWER8
Case study: Technische Universität München offers fast, simple and smart hosting services with SAP and IBM 
Video: Technische Universität München meet customer expectations with SAP HANA on IBM POWER8 
Analyst paper: IBM: Empowering SAP HANA Customers and Use Cases 
Article: HANA On Power Marches Toward GA

Selected SAP Press
ComputerWorld: IBM’s new Power Systems servers are just made for SAP Hana
eWEEK, IBM Launches Power Systems for SAP HANA
ExecutiveBiz, IBM Launches Power Systems Servers for SAP Hana Database System; Doug Balog Comments
TechEYE.netIBM and SAP work together again
ZDNet: IBM challenges Intel for space on SAP HANA
Data Center Knowledge: IBM Stakes POWER8 Claim to SAP Hana Hardware Market
Enterprise Times: IBM gives SAP HANA a POWER8 boost
The Platform: IBM Scales Up Power8 Iron, Targets In-Memory

Also a planning guide for HANA on Power has been published at http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102502 .

May 7, 2015 Posted by | Uncategorized | , , , , , , , , , , | 3 Comments

SAP HANA on Power – status update

This entry has been superseded by a new one: https://saponpower.wordpress.com/2014/06/06/there-is-hop-for-hana-hana-on-power-te-program-begins/

 

After Vishal Sikka’s announcement that SAP was investigating the potential of HANA on IBM Power Systems, it seemed that all that was needed for this concept to become a reality was for IBM to invest in the resources to aid SAP in porting and optimization of SAP HANA on Power (HoP) and for customers to weigh in on their desire for such a solution.

Many, very large customers told us that they did let SAP know of their interest in HoP.  IBM and SAP made the necessary investments for a proof of concept with HoP.  This successful effort was an example of the outstanding results that happen when two great companies cooperate and put some of their best people together.  However, there are still no commitments to deliver HoP in 2013.  SAP apparently has not ruled out such a solution at some point in the future.  So, why should you care since HANA already runs on x86?

Simple answer.  Are you ready to bet your business on x86?  

Do Intel systems offer the scalability that your business requires and can those systems react fast enough to changing business conditions?  Power scales far high than x86, has no artificial limitations and responds to changing demands almost instantly.

Are x86 systems reliable enough?   Power Systems inherited a wide array of self correcting and fault tolerant features from the mainframe, still the standard for reliability in the industry.

Are x86 systems secure enough?   Despite the best attempts by hackers, PowerVM has still never been breached.

Can you exploit virtualization or will you have to go back to a 1990s concept of islands of automation?  The PowerVM hypervisor is part of every Power system, so it is virtualized by default and the journey that most customers have been on for most of this millennium can continue unabated.

What can you do about this?  Speak up!!  Call your SAP Account Executive and send them notes.  Let them know that you are unwilling to take a chance on allowing your SAP Business Suite database systems to be placed on anything less than the most reliable, scalable, secure and flexible systems available, i.e. IBM Power Systems.    Remind SAP that Business Suite DB already runs very well on current Power Systems and that until SAP is willing to support this platform for HANA, there is very little compelling reason for you to consider a move to HANA.

Sapphire is just a week away.  This may be the best opportunity for you to deliver this message as most of SAP’s leadership will be present in Orlando.  If they hear this message from enough customers, it is unlikely that they will simply ignore it.

May 6, 2013 Posted by | Uncategorized | , , , , | 1 Comment